
SPRINTF 1
ID: 840-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

SPRINTF
Be careful with string formatting operations.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-17

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 5948 bytes

Attack Category • Malicious Input

Vulnerability Category • Format string

• Buffer Overflow

Software Context • String Formatting

• String Management

Location • stdio.h

Description The sprintf function is used to build strings by
embedding format field specifiers in a string and
having the data converted into the equivalent string
form and then substituted for the specifier.

{v}sprintf() is susceptible to buffer overflow if
used improperly.Mark any instance of vsprintf()
and sprintf() as vulnerabilities. Replace calls with
{v}snprintf() or change the format string.

Check the format string to see if it includes "%.111s"
formatting limit.

The return result of sprintf() tells how many
characters were actually written. If the number of
chars is larger than the original buffer, that means
memory has been overwritten and the program state
is invalid.

APIs Function Name Comments

sprintf fmt: 1; src: 2 variable;

vsprintf fmt: 1; src: 2 variable;

wnsprintf fmt: 2; src: 3 variable;

wnsprintfA fmt: 2; src: 3 variable;

wnsprintfW fmt: 2; src: 3 variable;

wvnsprintf fmt: 2; src: 3 variable;

wvnsprintfA fmt: 2; src: 3 variable;

wvnsprintfW fmt: 2; src: 3 variable;

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html


SPRINTF 2
ID: 840-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

Method of Attack Similar to strcpy(), sprintf allows unbounded
copying of text, leaving the buffer susceptible to
overflow attack. Furthermore, there is no good way
to verify that the dest buffer will be big enough for
the data to be formatted into it.

The general problem is that sprintf does no argument
checking internally.

Exception Criteria

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

General:

Ensure
buffers
are null
terminated.
Insert
buffer
overflow
detection
code and if
condition
is detected,
terminate.

There is no
completely
portable
manner
to address
buffer
overflow
problems
with
sprintf.

Guidance:

Convert to
snprintf,
assuming
your
platform
contains
snprintf
that is
portable.
Embed
formatting
characters
for sprintf
output.

Signature Details int sprintf(char *str, const char *format, ...);



SPRINTF 3
ID: 840-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

Examples of Incorrect Code void main(int argc, char **argv)
{
char usage[1024];
sprintf(usage, "USAGE: %s -f flag
[arg1]\n", argv[0]);
}

/* and then */

/* This subverts the above
apparently safe program */
void main()
{
execl("/path/to/above/program",
<<insert really long string
here>>,
NULL);
}

Examples of Corrected Code /* Convert to snprintf */

void main(int argc, char **argv)
{
char usage[1024];
char format_string = "USAGE: %s -
f flag [arg1]\n";
snprintf(usage,
format_string, argv[0], 1024-
strlen(format_string) + 1);
}

/* Use format string to limit the
amount of characters */
void main(int argc, char **argv)
{
char usage[1024];
sprintf(usage, "USAGE: %.1000s -f
flag [arg1]\n", argv[0]);
}

Source References • Viega, John & McGraw, Gary. Building Secure
Software: How to Avoid Security Problems
the Right Way. Boston, MA: Addison-Wesley
Professional, 2001, ISBN: 020172152X, pg.
144

• Howard, Michael & LeBlanc, David C. Writing
Secure Code, 2nd ed. Redmond, WA: Microsoft
Press, 2002, ISBN: 0735617228.

• McGraw, Gary & Viega, John. Make
Your Software Behave: Preventing Buffer

Overflows2 (2000).

Recommended Resource

Discriminant Set Operating System • Windows

http://www-106.ibm.com/developerworks/library/s-buffer-defend.html
http://www-106.ibm.com/developerworks/library/s-buffer-defend.html
http://www-106.ibm.com/developerworks/library/s-buffer-defend.html


SPRINTF 4
ID: 840-BSI | Version: 3 | Date: 5/16/08 2:39:35 PM

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

mailto:copyright@cigital.com

